
IV. HAAR WAVELET

In this chapter we will discuss the simplest wavelet in history, the Haar wavelet.

First, let us define the concept of wavelet.

Definition 1. Let ψ ∈ L2(R). ψ is called called a (dyadic) orthonormal wavelet

in L2(R), if

{2n
2 ψ(2nx− l) | n, l ∈ Z}

is a complete orthonormal system in L2(R).

For convenience, for each pair of integers n, l, we usually use ψn,l(x) to denote

the function 2
n
2 ψ(2nx−l). In this course, we only deal with wavelets that are dyadic

and orthonormal, and belong to L2(R), so we often omit dyadic and orthonormal,

and even L2(R), simply call such functions wavelets. Next we introduce the Haar

function:

Definition 2. Let

H(x) =





1 0 ≤ x <
1
2

−1
1
2
≤ x < 1

0 otherwise

Then H(x) is called the Haar function.

The main goal of this chapter is to prove that the Haar function is a dyadic

orthonormal wavelet in L2(R). Namely

Theorem 1. Let H(x) be the Haar wavelet. Then {2n
2 H(2nx− l) | n, l ∈ Z} is a

complete orthonormal system in L2(R).

We prove this theorem through several steps. Let us check first that {2n
2 H(2nx−

l) | n, l ∈ Z} is an orthonormal system in L2(R). To prove this, let us first write

Hn,l(x) = 2
n
2 H(2nx− l) in an explicit way: For each pair of integers n, l,

Hn,l(x) =





2
n
2 x ∈ [

2l

2n+1
,
2l + 1
2n+1

)

−2
n
2 x ∈ [

2l + 1
2n+1

,
2l + 2
2n+1

)

0 otherwise.
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2 IV. HAAR WAVELET

For any function f : R −→ C, we call the set {x ∈ R∣∣|f(x)| 6= 0} the support of

function f . We usually denote this set as supp(f).

Proposition 1. Let H(x) be the Haar wavelet. Then {2n
2 H(2nx− l) | n, l ∈ Z} is

an orthonormal system in L2(R).

Proof. First of all, for any integers n and l,

||Hn,l||22 =
∫ ∞

−∞
|Hn,l(x)|2dx =

∫ ∞

−∞
2n|H(2nx− l)|2dx.

With a change of variable u = 2nx− l, the above integral becomes
∫ ∞

−∞
|H(u)|2du =

∫ 1

0

1dx = 1.

Note that for any integers n and l, supp(Hn,l) = [ l
2n , l+1

2n ]. So for two functions

Hn,l1 and Hn,l2 with n, l1, l2 ∈ Z and l1 6= l2, we see that the intersection of

supp(Hn,l1) and supp(Hn,l1) is at most a set of single point. Therefore

〈Hn,l1 ,Hn,l2〉 =
∫ ∞

−∞
Hn,l1(x) ·Hn,l2(x)dx = 0.

Now let us look at two functions Hn1,l1 and Hn2,l2 with n1, n2, l1, l2 ∈ Z and

n2 > n1, l1 6= l2. We write

supp(Hn1,l1) = [
l1

2n1
,
l1 + 1
2n1

] = [
2n2−n1 l1

2n2
,
2n2−n1(l1 + 1)

2n2
],

we further write it as the union of sets, namely supp(Hn1,l1) =

[
2n2−n1 l1

2n2
,
2n2−n1 l1 + 2n2−n1−1

2n2
] ∪ [

2n2−n1 l1 + 2n2−n1−1

2n2
,
2n2−n1 l1 + 2n2−n1

2n2
],

where Hn1,l1 takes value 2n1 on the first set in the union above and −2n1 on the

second set in the union above (except an end point). Comparing it with

supp(Hn2,l2) = [
l2

2n2
,
l2 + 1
2n2

],

we see that if the intersection of supp(Hn1,l1) and supp(Hn2,l2) is not empty, or a

set of a single point, then supp(Hn2,l2) is contained in one of the sets in the union

above where Hn1,l1 is constant. Hence 〈Hn1,l1 , Hn2,l2〉 is always 0. This finishes

our proof. ¤

In order to complete the proof of Theorem 1, we only need to prove that the

orthonormal system {2n
2 H(2nx− l) | n, l ∈ Z} is complete. According to Theorem

1 in Chapter 1, we only need to prove that for any f ∈ L2(R),
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||f ||22 =
∑

n,l∈Z
|〈f,Hn,l〉|2.

Let V = {f ∈ L2(R)
∣∣∃M > 0,∃m ∈ Z , s.t. supp(f) ⊂ [−M, M ], f |[ j

2m , j+1
2m ) is

constant for any j ∈ Z}. We first prove that the above equality holds for the subset

V of L2(R) defined above.

Lemma 1. Let the subset V of L2(R) be as defined above. Then for any f ∈ V ,

||f ||22 =
∑

n,l∈Z
|〈f,Hn,l〉|2.

Proof. To simplify the computation, note that for any f ∈ L2(R), if we let

f+(x) =

{
f(x) x ∈ [0,∞)

0 otherwise

f−(x) =

{
f(x) x ∈ (−∞, 0)

0 otherwise

then ||f ||22 = ||f+||22 + ||f−||22. Also for any pair of integers n and l, supp(Hn,l) is

contained either in [0,∞) or (−∞, 0], so either 〈f+,Hn,l〉 = 0, or 〈f−,Hn,l〉 = 0.

Hence

|〈f, Hn,l〉|2 = |〈f+,Hn,l〉+ 〈f−,Hn,l〉|2 = |〈f+,Hn,l〉|2 + |〈f−,Hn,l〉|2.

Therefore to prove the lemma, we only need to check whether the identity holds

for functions in V whose support is contained either in [0,∞) or in (−∞, 0]. Without

loss of generality, let us assume that for some N ∈ Z and some M ∈ N, supp(f) ⊂
[0, 2M−N ]. Specifically,

f(x) =





AN,l x ∈ [
l

2N
,
l + 1
2N

), l ∈ {0, 1, 2, ..., 2M − 1}
0 otherwise

where AN,l ∈ C for each l ∈ {0, 1, 2, ..., 2M − 1}. First, we compute to get

||f ||22 =
1

2N

2M−1∑

l=0

|AN,l|2.

It is more complicated to compute 〈f, Hn,l〉. First we note that for any integer

n ≥ N , and any l ∈ Z, we have 〈f,Hn,l〉 = 0 since whenever the intersection of

supp(f) and supp(Hn,l) is other than empty set or a set of single point, supp(Hn,l) =
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[ l
2n , l+1

2n ] is contained in one of the sets of the form [ l
2N , l+1

2N ] with l ∈ {0, 1, 2, ..., 2M−
1} on which f is constant.

When n = N − 1, if l /∈ {0, 1, 2, ..., 2M−1 − 1}, then 〈f,HN−1,l〉 = 0. Also

〈f, HN−1,0〉 = 2
N−1

2
AN,0 −AN,1

2N
,

〈f, HN−1,1〉 = 2
N−1

2
AN,2 −AN,3

2N
,

...,

〈f, HN−1,2M−1−1〉 = 2
N−1

2
AN,2M−2 −AN,2M−1

2N
.

When n = N − 2, if l /∈ {0, 1, 2, ..., 2M−2 − 1}, then 〈f, HN−2,l〉 = 0. Also

〈f, HN−2,0〉 = 2
N−2

2
AN,0 + AN,1 −AN,2 −AN,3

2N
,

〈f, HN−2,1〉 = 2
N−1

2
AN,4 + AN,5 −AN,6 −AN,7

2N
,

...,

〈f,HN−2,2M−2−1〉 = 2
N−1

2
AN,2M−4 + AN,2M−3 −AN,2M−2 −AN,2M−1

2N
.

......,

When n = N −M , if l 6= 0, then 〈f, HN−M,l〉 = 0. Also

〈f, HN−M,0〉 = 2
N−M

2
AN,0 + ... + AN,2M−1−1 −AN,2M−1 − ...−AN,2M−1

2N
.

When n < N − M , we let n = N − M − p with p ∈ N, likewise if l 6= 0, then

〈f, HN−M−p,l〉 = 0. Also

〈f, HN−M−p,0〉 = 2
N−M−p

2
AN,0 + AN,1 + ... + AN,2M−2 + AN,2M−1

2N
.

Thus, to check that ||f ||22 =
∑

n,l∈Z |〈f, Hn,l〉|2, we only need to prove the following

elementary lemma, which will be left to the reader. ¤

Lemma 2. Let M ∈ N and {Al}2
M−1

l=0 ⊂ C. Then

2M−1∑

l=0

|Al|2

=
|A0 −A1|2 + |A2 −A3|2 + ... + |A2M−2 −A2M−1|2

2
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+
|A0 + A1 −A2 −A3|2 + ... + |A2M−4 + A2M−3 −A2M−2 −A2M−1|2

4

+
|A0 + A1 + A2 + A3 −A4 −A5 −A6 −A7|2 + .........

8

+.....

+
|A0 + A1 + A2 + ... + A2M−1−1 −A2M−1 −A2M−1+1 − ...−A2M−1|2

2M

+
|A0 + A1 + A2 + ... + A2M−2 + A2M−1|2

2M
.

To complete the proof of Theorem 1, we will use the fact that the set V defined

above is dense in L2(R) under the L2(R) norm, the proof of this fact is beyond the

scope of this course. To be more specific, we have

Lemma 3. For any f ∈ L2(R), any ε > 0, there is a function g ∈ V , such that

||f − g||2 < ε.

Proof of Theorem 1. We only need to prove that for any f ∈ L2(R),

||f ||22 =
∑

n,l∈Z
|〈f,Hn,l〉|2.

If ||f ||2 = 0, then f = 0 and there is nothing to prove. If ||f ||2 6= 0, we note first

that since {2n
2 H(2nx− l) | n, l ∈ Z} is an orthonormal system in L2(R), according

to Bessel’s Inequlity in Chapter 1,
∑

n,l∈Z |〈f, Hn,l〉|2 is convergent and therefore

well-defined. In fact, ∑

n,l∈Z
|〈f, Hn,l〉|2 ≤ ||f ||22.

Now for any ε > 0, take ε1 = min{ ε
6||f ||2 , ||f ||2}, then according to Lemma 3,

there is a function g ∈ V , such that ||f − g||2 < ε1. Thus

||g||2 = ||f − g + g||2 ≤ ||f − g||2 + ||g||2 < 2||f ||2.

Also, by Lemma 1,

||g||22 =
∑

n,l∈Z
|〈g,Hn,l〉|2.

Hence, ∣∣||f ||22 −
∑

n,l∈Z
|〈f,Hn,l〉|2

∣∣

=
∣∣||f ||22 − ||g||22 +

∑

n,l∈Z
|〈g,Hn,l〉|2 −

∑

n,l∈Z
|〈f, Hn,l〉|2

∣∣
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≤ ∣∣||f ||22 − ||g||22
∣∣ +

∣∣ ∑

n,l∈Z
|〈g, Hn,l〉|2 −

∑

n,l∈Z
|〈f, Hn,l〉|2

∣∣.

Let us denote the above two terms as I and II respectively. We will treat them

separately. For the first term I above, by triangle inequality of the norm || · ||2, and

the fact that ||g||2 < 2||f ||2, we have

I =
∣∣||f ||22 − ||g||22

∣∣ =
∣∣||f ||2 − ||g||2

∣∣ · (||f ||2 + ||g||2)

≤ ||f − g||2 · (||f ||2 + ||g||2) < ε1 · 3||f ||2 ≤ ε

2
.

For the second term, we have

II =
∣∣ ∑

n,l∈Z
|〈g, Hn,l〉|2 −

∑

n,l∈Z
|〈f,Hn,l〉|2

∣∣ =
∣∣ ∑

n,l∈Z
(|〈g,Hn,l〉|2 − |〈f, Hn,l〉|2)

∣∣

≤
∑

n,l∈Z

∣∣|〈g, Hn,l〉|− |〈f,Hn,l〉|
∣∣ · |〈g,Hn,l〉|+

∑

n,l∈Z

∣∣|〈g,Hn,l〉|− |〈f, Hn,l〉|
∣∣ · |〈f, Hn,l〉|

Now by triangle inequality of the norm of complex numbers, Cauchy-Schwartz

Inequality of inner product on l2(Z) and Bessel Inequality, in that order, we see

that

III ≤
∑

n,l∈Z
|〈g − f, Hn,l〉| · |〈g, Hn,l〉|+

∑

n,l∈Z
|〈g − f, Hn,l〉| · |〈f, Hn,l〉|

≤ (
∑

n,l∈Z
|〈g − f, Hn,l〉|2) 1

2 · (
∑

n,l∈Z
|〈g,Hn,l〉|2) 1

2

+(
∑

n,l∈Z
|〈g − f,Hn,l〉|2) 1

2 · (
∑

n,l∈Z
|〈f, Hn,l〉|2) 1

2

≤ ||f − g||2 · ||g||2 + ||f − g||2 · ||f ||2 < ε1 · 3||f ||2 ≤ ε

2
.

In short, for any ε > 0, we have

∣∣||f ||22 −
∑

n,l∈Z
|〈f, Hn,l〉|2

∣∣ < ε.

Thus for any f ∈ L2(R), we have

||f ||22 =
∑

n,l∈Z
|〈f,Hn,l〉|2.

¤


